Species Tag: Version: Date: Contributor:	51001 3 June 1996 H. S. P. Müller	Species Name:	HCCCN Cyanoacetylene, or 2-Propynenitrile
Lines Listed:	139	Q(300.0) =	4124.495
Freq. (GHz) <	1050	Q(225.0) =	3093.536
Max. J:	115	Q(150.0) =	2062.526
LOGSTR0 =	-7.0	Q(75.00) =	1031.679
LOGSTR1 =	-4.4	Q(37.50) =	516.319
Isotope Corr.:	0.	Q(18.75) =	258.656
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	129.830
$\mu_a =$	3.724	A=	
$\mu_b =$		B=	4549.058
$\mu_c =$		C=	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data 7, 441. The dipole moment was also given in this reference. Additional lines were taken from K. M. T. Yamada, A. Moravec, and G. Winnewisser, 1996, Z. Naturforsch. 50a, 1179.

Quadrupole splittings due to the $^{14}{\rm N}$ nucleus are small. They are only considered for $J\leq 5.$ For all other J the spin multiplicity was considered.